
Dynamic verification of input and output data streams for market data
aggregation and quote dissemination systems (Ticker Plant)

Alyona Bulda
Exactpro, LLC

alyona.bulda@exactpro.com

Maria Orlova
Exactpro, LLC

maria.orlova@exactpro.com

Abstract - Market data aggregation and quote dissemination
systems (Ticker Plants) are widely used across the electronic
trading industry. A Ticker Plant is responsible for distributing
information about multiple execution venues over a normalized
protocol. This paper presents a dynamic verification approach
for such systems. Based on a set of programs developed by the
authors, it allows processing large data sets, including those
collected during non-functional testing of trading platforms and
using them in real-live production. The paper also outlines
benefits and shortcomings of the selected approach for real-time
and historical transactions analysis.

Keywords - market data, ticker plant, trading platform,
exchange, non-functional testing, dynamic verification

I. 	
 Introduction	
 	

It is impossible to imagine modern day trading

without up-to-date information about financial instruments,
orders, and trades… Electronic trading is characterized by
huge amount of data processed by a multitude of systems and
algorithms. In its turn such systems and algorithms generate
vast amounts of other data disseminated in various forms for a
variety of purposes. One of the systems disseminating large
amounts of data is a system of quotes aggregation and
distribution (Ticker Plant).

A Ticker Plant is a system of aggregating
market data information from various electronic trading
platforms (or exchanges) and its dissemination. The system
provides market data to the traders in a normalized or unified
format [6]. Based on accumulated market data, Ticker Plant
systems often calculate additional parameters, i.e. they enrich
the static data about stocks and derivatives. One other
characteristic of Ticker Plant systems is the ability to unite
homogeneous values of disseminated quotes - Price Levels,
real-time quote data provision based on requests from
clients (e.g., such widely used services as Level 1, Level 2
[7], Index [9], T&S, News) - and storing of disseminated
market data.
A schematic representation of a Ticker Plant system is
provided below as Picture 1.

Picture 1. A Ticker Plant system schema

II. High	
 Level	
 Requirements	
 for	
 Ticker	

Plant	
 Systems	

Based on the description of a Ticker Plant system and
its main characteristics noted above, we provide a set of
requirements the system should comply with. We will follow
this set of characteristics when testing it. A classification of
such requirements was provided in [18], and in this paper we
are providing a more complete list of such requirements. In
order to make the assessment of each of the characteristics
easier, we have divided them into functional and non-
functional ones. A Ticker Plant system should:

• From a functional standpoint:

1. Collect quotes information from several sources (the
suppliers of market data: exchanges, banks);
2. Process reference data provided by the exchanges;
3. Process quotes information disseminated via various data
transmission protocols in real-time;
4. Convert the collected information into one format;
5. Aggregate quotes information according to various
described methods;
6. Process this data in order to enrich the system’s
functionality: e.g., provide statistics (VWAP, Turnover, Trade
High/Low, 52 week Trade High/Low) [1];

7. Provide data according to clients’ requests: Level 1,
Level 2, T&S, News, Index, Option chains, etc. [7] [9];
8. Provide recorded historic data about quotes.

• From a non-functional standpoint:

1. Provide fast processing of quotes data streams received
from the exchanges in real-time;
2. Provide fast processing of requests received from clients
and quotes data depending on the type of a client request (e.g.,
separately for a traded instrument, or a group of instruments,
or the entire market);
3. Provide continuous working efficiency of the system;
4. Provide system operability;
5. Provide the ability of system monitoring (i.e. the
availability of applications to monitor the system and operate
its components);
6. Provide throughput;
7. Provide latency;
8. Provide fault tolerance.

 Having defined a set of functional and non-
functional characteristics of a Ticker Plant, we need to
understand the process of testing each of the
characteristics. The following two approaches to testing such
systems become obvious.
 In this paper, we would like to focus on the correctness
of the logic of order construction in a Ticker Plant system and
its reliability under load throughout an extended period of
time.

 Thus we have a specific task of verifying the outgoing
data flow in Ticker Plant systems under load or real-time.

Market	
 Data,	
 Replay	
 and	
 Recovery	

	

Highly loaded exchange and brokerage systems provide

market data concerning traded financial instruments by means
of their own components called Market Data Feeds. Every
financial instrument comprises a fair amount of information
generated every second. Therefore the ability to disseminate
the entire stream of market data and the speed of
disseminating market data for each financial instrument are
the main characteristics for this type of components of highly
loaded trading systems.

Normally market data includes the following set of
parameters that are specific for a certain financial instrument:
Ticker Symbol, Last Trade Price, Best Bid & Offer, ISIN,
exchange code, Trade Time, Close Price. Depending on the
complexity of highly loaded exchange systems, market data
can be processed by the electronic exchange’s internal
components and enriched with additional information: e.g.,
daily turnover, VWAP, and more detailed information about
the stock or derivative, i.e. Reference Data including, for
instance, parameters of traders, market, trading sessions, and
instruments. Reference Data or Static Data is instrument
information, which does not change real-time: e.g.,

International Securities Identification Number (ISIN), price at
the close of previous day’s trading session (Close Price),
Currency, the parameters of so called “Circuit Breakers” that
are normally presented as percentages of last trade price
(Dynamic or Static Circuit Breaker Tolerances (%)), and so on
[1]. There is a number of standard quote dissemination
protocols, such as, for instance, FIX/FAST [2], the so called
quote dissemination protocols with fixed length of messages
(e.g., ITCH [3]), or coded data dissemination protocols (e.g.,
HTTPS (HyperText Transfer Protocol Secure) [4], [5]) for
providing the above mentioned information.

To transmit quote information, many electronic exchanges
use both standard and bespoke protocols. Often traders cannot
afford developing computer applications that would collect
quote information required for their work. Therefore there is a
need of creating systems allowing collection and aggregation
of market data from various exchanges disseminated by using
different financial data transmission protocols.

Market Data Feeds continue to disseminate data on
multicast channels, however these will are active with a
primary feed published on a primary network path and an
identical secondary feed published on the resilient path.
Recipients have access to two identically sequenced multicast
feeds: Feed A and Feed B. Recipients may process both feeds
and arbitrate between them to minimize the probability of a
data loss.

If a gap in sequence numbers is detected on the multicast
channel, the recipient should assume that some or all of the
order books maintained on its systems are incorrect and
initiate one of the recovery processes outlined below.

Replay Channel – The TCP replay channel should be used
by clients to recover from a small-scale data loss on a
particular channel. It permits to request the retransmission of a
limited number of messages already published on the
multicast channel. The channel supports the retransmission of
the last small amount of messages published [3].

Recovery Channel – The TCP recovery channel should be
used by clients to recover from a large-scale data loss. It
permits to request a snapshot of the order book for the active
instruments in the market data group [3].

Each multicast channel has its own dedicated instance of
both a Replay and a Recovery service; each service is
accessible by individual TCP sessions to dedicated IP
addresses.

Protocol	
 UDP	

 The two main transport layer protocols are used in the
Internet, one of which requires establishing a connection and
the other one doesn’t. These protocols complement each other.
The protocol that does not require establishing a connection is
UDP (User Dataram Protocol) [20]. UDP is not a reliable
protocol as it does little other than sending the packets
between applications allowing them to complement that with
their own protocols. UDP is an interface for IP by way of de-
multiplication of several processes using ports and optional
straight through error detection.

 The Main Characteristics of UDP are:
• UDP is unreliable – it does not guarantee the

delivery of packets. There is no error detection, flow
control or re-transmission of lost packets. It just
sends them and doesn’t care whether they arrive or
not.

• UDP is a connection-less protocol – Data is just sent
and no socket needs to be established first. Data can
flow one way (as in a radio broadcast) or both ways
(a 2 way phone call). It also allows you to traverse
some NAT devices without using port forwarding
using a technique called UDP hole punching.

• UDP is not ordered – it does not use sequence
numbers and therefore it cannot guarantee that they
will reconstructed in the right order.

• UDP is fast – Because UDP doesn’t have the
additional overhead as TCP it is a faster protocol
ideal for streaming.

 For processes that need to drive the flow, control errors
and time intervals UDP is ideal. One of the areas where it is
especially useful is client-server applications. Often times the
client sends a short request to the server and expects a short
response. If the request and the response are lost, the client
may attempt to send another request after a certain amount of
time. This allows for code simplification and the reduction of
the amount of required messages compared to protocols that
need an initial tuning (such as TCP).
 Keeping in mind the main differences between TCP and
UDP it is sometimes better to use UDP over TCP. TCP should
be used when no packet loss is a requirement and the data
must be correct and free from errors. This is obviously useful
when viewing web pages, e-mails and most forms of
networking communication we are used to. When data is sent
over UDP the packets can be lost.
 Considering all available channels and all details and
peculiarities of these channels, we have developed an
approach to verify streams of the data for logical correctness
via these channels. The descriptions of this approach will be
started from separate parts.

III. Tools	
 used	
 for	
 Ticker	
 Plant	
 dynamic	

verification	

MListener is a program-model based on the
mechanism of restoring “lost” updates disseminated by a
channel. The program-model was developed due to the
specifics of the channels used to disseminate market
information. The UDP protocol is a more common way of
distributing market information over such channels [20]. The
protocol does not guarantee the delivery of the packets to the
addressees. [20]. This program-model plays the role of a
subscriber to the UDP market information channel. The logic
of the program-model is simple – if a packet containing a
change in the market flow is lost the program goes into
“recovery’ mode and re-requests the necessary information via
special recovery channels provided by the exchanges. As a

result, the program creates up to 2 additional files with market
information per each such channel. If examined in their
entirety, a complete picture of changes taking place at the
exchange can be obtained.

Agglutination tool – is an instrument utility which is
a part of MListener program-model. Its main function is to
combine real-time market information and restored data if a
small amount of real-time information was lost delivered in a
queue.

Book Reader – is a program-model allowing to
construct a book of quotes according to the logic of order
construction in a Ticker Plant system. The implementation
logic is based on the information seen by the external user
only rather than on Ticker Plant system logic. This allows
finding defects in such logic.

JSON (JavaScript Object Notation) - is a text format
of data exchange. The format is based on JavaScript. There are
2 main advantages of using the format: 1) it is easily human-
readable, and 2) it is easily generated and processed by the
machines. This provides us with advantages from the
standpoints of 1) flow analysis, and 2) the speed of program-
models [19].

This method of verification based on program-
models the text format of data exchange JSON is used thanks
to its lightness (compared to xml for instance). Due to that the
format allows for fast serializing / de-serializing and has the
advantage of being inter-platform (the libraries exist for all
platforms and all programming languages), flexible enough (it
is possible to describe the types of data and their structures),
compact enough (which is critical for large flows of data), has
easily understandable method syntax if there is a need to
understand the problems in the interaction of the components.

Book Checker – is a program-model allowing comparative
analysis of each level of quotes added to the book in the Book
Reader program-model, further pausing the work if
differences are found and showing the differences as a result
of performing the comparative analysis.

IV. Methods	
 used	
 for	
 Ticker	
 Plant	
 dynamic	

verification	

 In this chapter we are going to examine the process of
testing a Ticker Plant system by using the method of verifying
a system of data aggregation and dissemination based on
models.
 To achieve better clarity, we are going to separate the
testing process into the following stages:

- Collection of market information about quotes from
trading platforms (exchanges) delivered via a quote
dissemination protocol with fixed length of messages
(ITCH [3]). A “test” trading platform which is a full
copy of a real electronic Ticker Plant system and
MListener program-model receive incoming orders
and trades information from the exchanges. At this
stage, the “test” exchange [11] processes the quotes

information real-time. The MListener program-model
keeps the market information in a queue without
processing it.

- The collected historic information about changes

allows us to build an order book for each instrument
traded at the exchange after each quote change that
occurred both at the exchange and the Ticker Plant
system. Therefore, we receive 2 fully independent
order book flows. The independence of the flows
allows us track the defects that can be present in all
algorithms (including the Ticker Plant algorithm).

- The algorithm of the outgoing Ticker Plant flow and

the outgoing exchange flow processed by program-
models. Pic. 2 shows a schematic view of how the
program-model works. The received Ticker Plant and
exchange flows are verified in such a way that the
book flow received by the program-model is the
expected result for verification, while the flow built
by the Ticker Plant system is the actual result to
compare it with the expected one. Further, if a
comparison of the two flows finds a difference, an
analysis of the succession of changes that could have
lead to a defect in an algorithm is performed. If the
difference was caused by a defect in the program-
model the same analysis is performed as to the logic
and correctness of the change. If a defect in the test
tool is found, it is easy to fix it and continue
processing the flows.

 This approach allows verifying a fairly large spectrum of
scenarios to check the correctness of a Ticker Plant system
operation. Such verification analysis is based on data from
quote books. Such verifications include the following: that the
values of added quotes are correct (price, quantity, order
direction, etc.); that the order change is correct; that the book
changes when an order is removed, or in case of an aggressive
order change, or in case of executed trades are correct; that
the book is constructed correctly in case of multi-level trades;
that the priority of constructed orders is correct, that the
addition of multi-level orders (10 price levels) is correct.

Pic.2 The algorithm of verifying the outgoing

exchange flow processed by program-models.

We are providing a more detailed diagram of Ticker
Plant system verification done by using program-models
showing all of the steps of going through the program-models
explained in this paper in succession.

Pic.3 The verification of Ticker Plant systems by

using models.

 The test approach is necessary and viable due to the fact
that there is a multitude of situations involving various price
positions and their changes as well as the large number of
exchanges that disseminate quotes from different platforms.
All such situations and combinations are structured in their
entirety by using the program-models therefore eliminating the

need to spend time on arranging static pre-conditions. It is
enough to generate a random set of trading combinations
leading to various change combinations in quote aggregation
and dissemination systems (Ticker Plant). On the other hand,
this can be an emulation of trading cycles including all
changes from the production platform, whose outgoing flow is
also processed by program-models as described above.

V. Conclusion	

This paper provides a description of quote aggregation and

dissemination system (Ticker Plant), a list of its basic
characteristics, its main functional components that need to be
covered by testing. The paper describes the main large
functional component for which a verification approach has
been developed and the program-models implementing the
approach have been built. The proposed method has been
successfully used in practice. As the result of its
implementation, a large amount of border conditions defects in
order book construction has been detected.

References
1. Watson Wheatley Financial Systems, Reconciliation

Best Practice,
http://www.watsonwheatley.com/literature.html

2. M, Cochinwala, V. Kurien, G. Lalk, D. Shasha,
“Efficient data reconciliation”, The Journal of
Information Science, vol.137, issue 1-4, pp. 1-15,
Sep. 2001

3. Roger Nolan, The Informatica Blog, Even ‘The Most
Interesting Man In The World’ Won’t Do This…
http://blogs.informatica.com/perspectives/2012/03/06
/even-the-most-interesting-man-in-the-world-wont-
do-this/

4. London Stock Exchange. How UnaVista Works:
http://www.londonstockexchange.com/products-and-
services/matching-reconciliation/how-unavista-
works/index.html

5. Official site B2Bits <epam>. // [Electronic resource].
–http://www.b2bits.com/trading_solutions/market-
data-solutions.html

6. Official site FIXprotocol. // [Electronic resource]. –
Режим доступа http://www.fixprotocol.org/

7. Level1 Market Data Documentation / Official site
London Stock Exchange // [Electronic resource]. –
http://www.londonstockexchange.com/products-and-
services/millennium-exchange/millennium-exchange-
migration/mit303.pdf

8. P. Karlton, P. Kocher.: The Secure Sockets Layer
(SSL) Protocol Version 3.0 // [Electronic resource]. –
Режим доступа http://tools.ietf.org/html/rfc6101

9. Official site FTSE. // [Electronic resource]. –
http://www.ftse.com/Indices/Data_Licenses/Real-
time_Constituent_Data.jsp

10. Official site B2Bits <epam>. // [Electronic resource].
–http://www.b2bits.com/trading_solutions/market-
data-solutions.html

11. Building the Book: A Full-Hardware Nasdaq Itch
Ticker Plant on Solarflare’s AoE FPGA Board /
Sherman,M., Sood,P., Wong,K., Iakovlev,A.,
Parashar,N. // [Electronic resource]. –
http://www.cs.columbia.edu/~sedwards/classes/2013/
4840/reports/Itch.pdf

12. Official site Tokyo Stock Exchange // [Electronic
resource]. –
http://www.tse.or.jp/english/market/mkinfo/mains.ht
ml

13. Day Trading. / Official site About.com // [Electronic
resource]. –
http://daytrading.about.com/od/daytradingmarketdata
/a/MarketDataDefin.htm

14. Customer Development Service (CDS). / Official
site– London Stock Exchange // [Electronic
resource]. –
http://www.londonstockexchange.com/products-and-
services/technical-
library/customer/customerdevelopmentservice/custo
merdevelopmentservice.htm

15. Trading Floor Architecture / Official site Cisco //
[Electronic resource]. –
http://www.cisco.com/en/US/docs/solutions/Verticals
/Trading_Floor_Architecture-E.html

16. Official site BSE India // [Electronic resource]. –
http://www.bseindia.com/markets/MarketInfo/DispN
oticesNCirculars.aspx?page=20120531-
22&pagecont=0,31/05/2012,31/05/2012,,All,All,All,
Scrip%20Name%20/%20Code

17. Official site MICEX // [Electronic resource]. –
http://rts.micex.ru/s437

18. Статья К.В.Воронцов (ВЦ РАН), С.Б.
Пшеничников (ММВБ): “Имитационное
моделирование торгов: новая технология
биржевых тренажеров.” / Журнал «Индикатор»,
№2 (42). М. 2002 год // [Electronic resource]. ––
http://www.forecsys.com/site/about/press/exchange_s
imulator/

19. Official site Oslo Bors Stock Exchange. // [Electronic
resource]. –http://www.oslobors.no/ob_eng/Oslo-
Boers/Trading/Delta/Millennium-Exchange/Guide-
to-Testing-Services-updated-issue

20. Zverev,A., Bulda,A.: Exchange Simulators for SOR.
Algo Testing: Advantages vs. Shortcomings. /
Конференция ExTENT // [Electronic resource]. –
http://www.slideshare.net/extentconf/exchsims-
forsoralgotestingadvantagesvsshortcomings29102011
111113011104phpapp02

21. Official site Exactpro Systems. // [Electronic
resource]. –http://www.exactprosystems.com/

22. Bulda A., Buyanova O., Zverev A., - Article “Usage
of Exchange Simulators and Test Exchanges as Tools
for Ticker Plant Systems”,
https://yadi.sk/d/eKKxTtEGCCeF6

23. Official site JSON. // [Electronic resource]. –
http://www.json.org/index.html

24. Andrew S. Tanenbaum, David J. Wetherall.:
Computer Networks. // [Electronic resource]. –
http://cse.hcmut.edu.vn/~minhnguyen/NET/Compute
r%20Networks%20-%20A%20Tanenbaum%20-
%205th%20edition.pdf

