
Reference test harness for

algorithmic trading platforms

Victoria Leonchik

Exactpro Systems

victoria.leonchik@exactprosystems.com

Alexey Sukhov

Exactpro Systems

alexey.sukhov@exactprosystems.com

Eugene Ushakov
Exactpro Systems

eugene.ushakov@exactprosystems.com

Iosif Itkin

Exactpro, LSEG
iosif.itkin@exactpro.com

Anna-Maria Lukina
Exactpro Systems

anmay@exactpro.com

Abstract—The safety and stability of algorithmic trading

software is an ongoing concern for exchanges, market

participants and the society in general. Financial regulators

worldwide are trying to create effective rules to prevent self-

enforced market volatility and technology crashes caused by

computer-aided trading. Specifying relevant requirements for

dynamic software verification of algorithmic trading platforms

remains is an on-going task. Yet, there has been little progress to

date in locating efficient and commonly accepted approaches.

This paper introduces a reference test harness implementation

for algo trading platforms created by the authors.

Keywords— trading, algorithm, strategy, testing.

I. Introduction

The days of open outcry trading and trading pits are almost

gone replaced by a new type of trading - algorithmic or

electronic trading. Algorithmic trading is the process of using

computers which execute a defined set of instructions to place

orders to generate profits with speed and frequency impossible

for a human to achieve [1].

Algorithmic trading became very popular during the last

decade - about 40% of all financial operations are based on

algorithms. Algo-trading by its nature is black box trading and

there are still lots of concerns and question marks around this

topic.

Algorithmic trading has received substantial attention from

the society following high profile events, such as Flash Crash

in 2010 when American indices (S&P 500, Dow Jones and

Nasdaq 100) collapsed and recovered very rapidly [2,3], and

the Knight Capital runaway algo disaster in 2012 when the

firm lost $450 million in 45 minutes [4,5,6].

Regulators have started to recognize the value of

algorithmic trading in the market place, but there is still

concern about its safety and market risks caused by rogue

algorithms. Regulators are trying to create rules and

obligations regarding algorithm building, testing and

deployment which could help prevent financial disasters and

ensure that trading algorithms are safe and reliable.

The next section of this paper describes the role of

algorithmic trading and associated legal framework. The third

section introduces a reference test harness for algotrading

platforms created by the authors. Section four drills into

auxiliary test algo types targeted at modelling realistic market

microstructure. The last section describes metrics and

characteristics measured during algo trading platforms testing.

II. The role of Algorithmic Trading for

Financial Market Rules and Regulations

The SEC (The United States Securities and Exchange

Commission) started to formulate new rules back in 2013 and

more recently FINRA published a list of suggested effective

practices for firms engaging in algorithmic strategies [7]. An

essential component of effective policies and procedures is

testing of algorithmic strategies prior to launching them in

Production.

Furthermore, the Hong Kong regulator (SFC - Securities &

Futures Commission) has also worked on creating efficient

rules which could be applied during the algorithm certification

process: “A licensed or registered person should ensure that

the algorithmic trading system and trading algorithms it uses

or provides to clients for use are adequately tested to ensure

that they operate as designed” [8].

ESMA has published a discussion paper for MiFID II /

MiFIR which will be effective from January 2017. It includes

a detailed description of the algorithmic testing procedure:

“An investment firm that engages in algorithmic trading shall

have in place effective systems and risk controls suitable for

mailto:victoria.leonchik@exactprosystems.com
mailto:alexey.sukhov@exactprosystems.com
mailto:eugene.ushakov@exactprosystems.com
/tmp/iosif.itkin@exactpro.com
mailto:anmay@exactpro.com

the business it operates to ensure that its trading systems are

resilient and have sufficient capacity” [9].

 The main requirements of the SEC and ESMA can be

found in the table below. (Fig.1)

SEC ESMA

 Conducting testing:

confirmation that core

code components

operate as intended and

do not produce

unintended

consequences

 Clearly delineated

development and testing

methodologies

 Quality Assurance

process should be

separated from any

development work

 Testing methodologies

should include

performance simulations /

back-testing and non-live

testing within a trading

venue testing environment
 Periodically evaluating

test controls

 Ensure that tests are

commensurate with the

risks that this strategy may

pose to itself and to the fair

and orderly functioning of

the markets operated by

the trading venue
 Data integrity, accuracy

and workflow validation

 Periodically evaluating test

controls

 Recording of all testing

protocols and results

 Conducting all testing in

a development

environment that is

segregated from

production

 Investment firms should

ensure that the production

and testing environments

are kept segregated at all

times

Fig.1 SEC and ESMA requirements

One of the essential parts of algorithm testing, based on

regulator requirements, is specific testing in a non-live trading

environment. This would allow those involved in the

certification process to make a correct assessment of algorithm

risk, profitability and efficiency.

III. Reference Test Harness

We would like to introduce our view on testing solutions

which could be used for testing of different algorithms and

could be easily adapted to any trading platform required. The

reference test harness consists of the following components:

 Algorithmic trading platform under test;

 One or several matching engines acting as

execution venue simulators;

 Competing test algorithms to simulate market

impact;

 Passive testing tools to gether quality,

performance and efficiency stats for the algo

systems and strategies under test;

 Customized order entry and market data

gateways;

 Market surveillance system;

 Auxiliary proxies to control test execution.

At the core of our solution we are using an exchange

matching engine as a market simulator. The authors have tried

several exchange systems, including those developed by

LSEG Technology services divison companies -

MillenniumIT and GATElab. Let consider a full multi asset

class matching platform developed by GATElab –

Exchangepath – 100µs.

It is a matching engine with proven efficiency and can be

used as a full replacement for a live trading system engine.

The major advantages of this matching engine are:

 100,000+ transactions per second;

 50,000+ market data notifications per second;

 Low start up and running costs;

 Low latency – less than 100µs at the end-user

gateway [10].

These conditions give us an opportunity to place a trading

algorithm under test in a Production-like environment and get

results which are closer aligned to what we would expect in a

Production environment. Trading algorithm under test can

submit orders into the matching engine and receive back

execution reports and related market data. It is possible to

deploy several matching engines to simulate multiple markets.

To decrease test harness hardware footprint, the authors

have introduced a replay of historical data known as

backtesting. Backtesting is useful as it could demonstrate the

efficiency of an algorithm from a historical point of view. On

the other hand, quite often backtesting tells you very little

about future profitability. Because of this, backtesting is both a

blessing and a curse. Many portfolio managers use backtesting

to prove that a strategy is viable, but they fail to evaluate a

number of issues that might be missed during backtesting as

general market sentiment cannot be predicted.

It is not possible to achieve 100% accuracy in the trading

day replace when dealing with highload distributed systems

[11]. As soon as a client algorithm is connected to the system

it will have an impact on historical data and change it, which

may lead to incorrect results in the evaluation of algorithm

risk and productivity. That is why a trading firm should be

concerned about returning historical data to its original state

without proper compensation of strategy impact. Backtesting

can produce positive results which can be too far from results

achievable in real conditions. In other words, during algorithm

testing we should take into account the impact of the

algorithm on historical market data replay. Thus for better

testing this impact should be suppressed - market data should

be restored by using counter flow models.

A testing tool should create counter-flows in response to

user-generated, non-historic submissions. The goal of any

counter-flow model is to replicate sufficiently the reaction of

the market on a user strategy through the generation of

additional flow of events which would be united with

modified historical and user-generated events. A counter-flow

model has very complex logic and consumes a lot of hardware

resources that leads to increased costs and testing time.

As an alternative to using the counter-flow model and

overall testing process improvement we suggest to add four

points in to the system which would be configurable for any

system and could help compensate testing strategy impact

(fig.2):

 Customized trading GWs;

 Customized Market Data GW;

 Latency and counterflow proxies;

 Simulated traders (Active Testing Tool):

 Arbitraging Minirobot

 Minirobots emulating ‘Slicing’ algorithms

 Minirobots emulating ‘Synthetic’ algorithms

 Exchange simulated orders

 Aggressive buyer/seller (Market panic scenarios)

 “Bandit”-algos

Fig.2 Test Harness for Algo trading system

Customized Trading Gateways and Market Data

Gateway

In order to have an ability to put a client‟s algorithm in a

disadvantaged position compared to another one which would

be “faster”, we can use customized Trading gateways. This

would allow us to test the algorithm under different co-

location conditions as we are able to control the latency of all

messages sent or received by the client‟s algorithm.

Testing will answer the following question: how profitable

an algorithm could be if outgoing/incoming messages have an

acceptable time delay or what would happen to algorithm

efficiency in case of increased latency?

The same customization could be applied to Market data

gateways such as ITCH and FAST. It would give us an

opportunity to evaluate the impact of different latencies in

receiving market data messages on the performance of the

trading algorithm.

Customized Trading gateways also allow us to change tags

in sent/received client‟s messages. In this case we will be able

to adjust our system to different clients who are using different

sets of tags.

Surveillance system

In addition to testing efficiency of the trading algorithm we

should take into account the involvement of control functions

(such as Suveillance, Legal, Compliance, Controllers,

Operations, etc.) as well as business objectives. These control

measures must prevent disruptions to the fair and orderly

functioning of the financial markets. Disruptions and incidents

may cause damage for trader‟s activity, but potentially also for

others traders too.

Despite the fact that an algorithm can show quite

impressive results and make good profit, it does not mean that

it can be used carelessly. Thus it makes sence to test the

legality of algos. It may be worth to run it through

Surveillance systems to make sure that trading firm will not

have any issues with regulators in terms of basic market rules

and the trading algorithm will not be considered abusive or

disruptive [12].

Passive Testing Tool

While using highly complex algorithms it is important to store
all the inbound and outbound data about all executed financial
transactions and verify this data with the data of the client and
the data in post trade. [13]

Fig.3 Passive Testing Tools in Trading Systems

Passive testing tools (Fig.3) are used for automated log
collection, data structuring, monitoring, system behavior
analysis and user certification [14]. Test tools allow analyzing
high volume of data promptly, reacting to deviations in the
system‟s behavior from requirements, and troubleshooting.
(Fig. 4)

Item
Description

Testing Type Passive Real-Time/Batch

Target SUT Trading Platforms, Market Data Delivery and Post-Trade
Systems

SUT Interface Back-end (typically connected to message gateways / APIs,
and DBs); GUI Testing Capabilities not supported

SUT Interaction

Method

Inputs and outputs monitored by means of message capture

and log parsing to analyze client activity and forecast system
response; DB queries for data verification; files transfer,

upload, export and comparison. Captured messages can be

viewed and analyzed in real-time or post-factum

Protocols Extant plug-ins for Industry-standard (FIX and dialects,

FAST, SWIFT, ITCH, HTTP, SOAP, etc.) and Proprietary

(MIT, SAIL, HSVF, RTF, RV, Reuters, Fidessa OA, Quant

House, etc.) protocols. New plug-ins for additional protocols

developed by request (codecs are shared between Sailfish

and Shsha)

Test Scripts Certification tests and data reconciliation may be performed
by using ordinary SQL queries. Test message traffic gener-

ated in real-time or replayed from log files by other tool
(e.g., Sailfish)

Test Manage-

ment, Execution

and Reporting

Integrated (Desktop front-end), allows for multiple simulta-

neous heterogeneous connections, consecutive execution of

multiple planned scripts, test results summary and detailed
test reports. Optional Big Button framework supported

Platform require-

ments

Low footprint cross-platform application, MySQL

Fig.4 Passive testing tool specification

Minirobots

Returning market data replay to its initial state can be

achieved by introducing an arbitraging script formalized in

one of the Minirobots tool which is to be used together with a

tested algorithm in the same framework.

The Minirobots tool [10B], developed with the idea of

simulating real traders‟ behavior in mind, is able to make

decisions under specific market conditions in a common

fashion, but at the same time has a certain degree of

autonomy. Depending on what the testing needs are, each of

the robots can act independently or jointly executing a

particular trading strategy or simply replaying a stored list of

orders. (Fig. 5)

Item Description

Capacity &

Precision

Hundreds – thousands of messages depending on the

algorithm complexity. Millisecond precision

Testing Type Active Multi-Participants (applicable for testing at the

confluence of functional and non-functional testing)

Target SUT Trading Platforms and Market Data Delivery Systems

SUT

Interface

Back-end (typically connected to message gateways /

APIs); GUI Testing Capabilities not supported

SUT

Interaction

Method

Message injection and capture to emulate multiple

participants‟ activity in electronic markets (essential when

there is a need to reproduce complex scenarios that can be

created by trading algorithms)

Protocols Extant plug-ins for Industry-standard (FIX and dialects,

etc.) and proprietary protocols. New plug-ins for additional

protocols developed by request

Test Scripts Multi-threaded Java code specifying different liquidity

profiles

Test

Management,

Execution and

Reporting

Integrated (Web front-end), allows for multiple

simultaneous heterogeneous connections, concurrent

emulation of multiple participants, detailed test reports.

Optional Big Button framework supported

Platform

requirements

Written in Java

Fig.5 Minirobots specification

IV. Algo Test Agents Used to Simulate

Liquidity and Market Impact

a. Arbitraging and Market Making Minirobots

Once arbitraging Minirobots has been implemented in the

test environment, it starts sending contra-orders to add

liquidity on a particular price level as soon as the order sent

from the tested algorithm hits the „market‟ bid or an offer.

That is how replayed market data is restored to the realistic

state, thereby reducing the potential impact of the tested

algorithm on the event sequence of the analysed trading day.

Arbitrage Minirobots are helpful when testing fragmented

markets. They can move liquidity across simulated venues.

b. Minirobots emulating ‘Slicing’ algorithms

Another productive option is to deploy Minirobots tool

emulating the behavior of market operator who is using

„Slicing‟ trading algorithms being widely spread at present

among a variety of institutional investment funds. According

to U.S. Commodity Futures Trading Commission [15]

estimates, more than 90% of institutional traders use trading

algorithms or other automated strategies to seek best execution

for their clients. This is due to the fact that „slicing‟ allows

hugely sized trading orders to be executed by dividing them

into small portions, which are then traded separately at

different time during a trading day. This minimises the risk of

orders being discovered and „front-run‟ by competitive or

„dirty‟ traders.

The „slicing‟ idea is most oftenly materialised in the usage

of the so called „Time Sliced‟ trading strategy. The Time

Sliced algo splits an order into equal sized slices (an element

of randomisation can be added too). The number of slices is

determined by the start and end time and the duration between

slices. Each slice is released to the market at intervals dictated

by the duration between slices.

„VWAP‟ represents a more sophisticated implementation

of a „slicing‟ strategy. This algorithm is intended to manage

the execution of an order in such way that it achieves the

Volume Weighted Average Price (VWAP) for the order's

instrument in the time period the trader has selected.

At a high level, the algorithm achieves this by releasing

slices of the order at varying rates according to the analysis of

historical market data. It uses additional execution logic to

determine the pricing and expiry of each „slice‟ created by the

model.

The fact that Time Sliced/VWAP based order execution

models is being popular in modern trading determines a

necessity to use Minirobots tool simulating Time

Sliced/VWAP trader together with a client‟s algorithm to

understand its efficiency and competitive performance when

trading is driven by someone else‟s automatic solution.

[16,17]

c. Minirobots emulating ‘Synthetic’ algorithms

When it comes to better execution one can either use an

automated solutions allowing the orders to be placed at the top

of the market‟s queue. For instance, this is often a matter of

immediate interest when there is a need to execute a trade at

the very start of a trading day. Such algos, usually called

„Hammer‟, are attempting to send the order just before market

open in order to reach the Exchange at the exact open time

rather than wait to receive the market open signal. This is

achieved by sending the order a few seconds before market

open (where it will be rejected) and by continuously re-

sending it until it is accepted by the Exchange. „Hammer‟ al-

gorithms behavior can also be mimicked by the Minirobots

tool to see how the automated strategy tested interacts with it

at the peak hours of a trading day.

 If trading is circumstantial and the trader needs to place

an order as a result of a particular price movement in an corre-

lated instrument (or a group of correlated ones), another algo

is used to release orders once the conditions pre-defined by a

trader‟s logic are reached. This behavior simulated by the Mi-

nirobot tool would give a singular advantage where one wants

to test „pairs trading‟ or arbitraging algorithms.

d. Exchange simulated orders

Where a market data replay is recorded from the exchange

that due to external reasons does not support natively some of

the order types, there is always a possibility that stop, trailing

stop, iceberg, ghost or market-if-touched orders are being

simulated by someone else‟s automated solution. This in fact

can affect the test results of a chosen algorithm and thus the

Minirobot tool sending „exchange simulated‟ orders might be

another example of a more sophisticated testing approach.

e. Aggressive buyer/seller (Market panic

scenarios)

Moreover, Minirobots who act like an aggressive buyer or

seller can be deployed to the testing environment. With such a

script implemented, it will be possible to re-create conditions

of the so called „panic‟ buying or selling in a particular deriva-

tive contract, underlying instrument, or a market composite

index. Beyond all doubt market „panic‟ is a once-off expe-

rience which may stimulate irrational price movements fre-

quently spurring algo-traders to react irrationally and wildly.

Such events a the well-known „Flash Crash‟ are subject of

anxiety due to a potential devastating impact on the financial

stability of the stock or even the economy. Emulating this by

using the Minirobots tool provides a benefit to assure that

tested algorithm would not fail under stress market events.

[18,19]

f. ‘Bandit’-algos

With algo trading increasing in popularity in the financial

markets there is a worrisome trend for anti-HFT or so called

“Predatory algorithms” to be used by traders whose aim is to

manipulate stock prices, forcing others to react to their benefit.

Despite the MiFID I and Dodd-Frank legislative acts going

into effect as long as 5 years ago, these illegal trading

practices are still popular due to the fact that they are highly

profitable and not always easy to detect, unfortunately. All

these require us to introduce a „bandit script` - having a

„predatory‟ logic - into the environment to see how it will

affect the tested algorithm in terms of its performance

characteristics.

Based on „Proposed Guidance on Certain Manipulative

and Deceptive Trading Practices‟ issued by Investment

Industry Regulatory Organization of Canada (IIROC) [20,21]

we might use the Minirobot tool to re-create the following

abusive market behavior -

1) ‘Layering’

 A strategy which initiates a series of orders and trades

(sometimes along with spreading false rumours in the

marketplace) in an attempt to ignite a rapid price movement

either up or down and induce others to trade at artificially high

or low prices. An example is a “layering” strategy whereby a

market participant places a bonafide order on one side of the

market and simultaneously “layers” the book with non-bona

fide orders on the other side of the market to bait other market

participants into reacting to the non-bona fide orders and trade

with the bonafide order.

2) ‘Quote-stuffing’
The practice of placing an unusual number of buy or sell

orders on a particular security and then immediately

cancelling them to “flood” the trading systems with excessive

market data messages. An objective may be to increase data

latencies for marketplaces or other market participants in order

to create “information arbitrage” opportunities.

3) „Spoofing’

A practice when limit orders that are not intended to be

executed are used to manipulate prices. Some strategies are

related to the open or the close of regular market hours that

involve distorting disseminated market imbalance indicators

through the entry of non-bonafide orders, checking for the

presence of an “iceberg” order, affecting a calculated opening

price and/or an aggressive trading activity near the open or

close for an improper purpose.

4) ‘Abusive liquidity detection’

Large orders (disclosed or iceberg) are entered during the

pre-open or employ “pinging” orders to detect the existence of

a large buyer or seller with the intent to trade ahead of, rather

than with, the large buyer or seller. After a profitable price

movement, the trades are reversed, or if the price moves

contrary to the position taken, the trading interest of the large

buyer or seller may be viewed as a free option to trade against.

All in all, the Minirobots tool allows us to emulate any

existing market participant behavior that can be used in client-

to-algo or client-vs-algos mode within the same testing

environment. This in fact offers a unique possibility to re-

create Production-like conditions, and hence to assure that a

tested algorithm is operating adequately with no real risk of

losing money.

V. Algorithm efficiency and riskless criteria

The main purpose of trading algorithm testing is proving

its efficiency and reliability. No one will use algorithms which

only generate financial losses. There are many criteria which

could be used for the evaluation of algo productivity.

Thus we decided to divide all criteria into two sections

Technical and Business efficiency:

Technical Efficiency Criteria

This section is based on ISTQB classification [22].

Functional criteria
The ability of an algo to produce correct outputs for the

inputs it receives according to specification. The less number

of existing errors an algorithm contains, the lower the

expectations of potential losses and fines are. The test harness

developed by the authors parses log files to search for error

and warning messages. It also analyses the consistency of the

data collected by passive testing tools. Simulated matching

engines and gateways reject incorrectly formatted messages

and orders that fail to pass the risk controls.

Non-Functional criteria

1) Performance

How does a trading algorithm perform in terms of

responsiveness and stability under a particular workloads

(market data streams)? Answering this question helps Quality

Assurance in understanding how an algo can cope with the

number of data feeds in processes, the number of exchanges it

trades on, and the types of securities it can trade. Data

collected from the network capture is used to estimate internal

latencies within the trading algo, including the time from

market data updates to issuing orders into the market.

2) Scalability

This is the capability of an algorithm to continue

functioning well under a growing amount of work, or its

potential when the algo is provided with more resources

(hardware mostly) in order to accommodate that growth or to

meet a user need. The presence of the scalable matching

engines as simulated markets allows running scalability tests

for algorithmic trading platforms.

3) Reliability

The ease of an algo to perform its required functions well

for a specified period of time under different specific test

conditions or for a specified number of operations. Test

harness automation enables us to repeat the tests many times

to check the systems reliability.

4) Efficiency

The capability of an algorithm to provide appropriate

performance under stated conditions, relative to the amount of

resources used. Hardware metrics are collected from the

trading platform to test its technical efficiency.

5) Maintainability

This is the ease with which an algorithm can be modified

to correct defects, modified to meet new requirements (e.g.

market conditions, regulatory acts changes), or modified to

make future maintenance easier. The Knigh Capital case

shows that the maintability and the ability to monitor the

system is what prevents a problem from turning into a disaster.

6) Recoverability

This is the capability of an algorithm to re-establish a

specified level of performance and recover the data directly

affected in case of failure. Failover and recovery tests should

be included into the systems testing scope.

Business Efficiency Criteria

 Achieving the best possible trading price does not guaran-

tee that the algorithm will make a profit. Best execution is a

wider definition [23]. Depending on the underlying trade or

investment idea on which a trading algorithm has been built,

best execution includes taking all appropriate steps to achieve

the best possible outcome along several dimensions. These

dimensions are:

 Price (execution, price improvement, spread capture);

 Cost (explicit, market impact, adverse selection);

 Probability of execution;

 Liquidity and volatility.

 There are a number of common execution performance

criteria that the trading algorithm is characterized by. The

most general and relevant criteria used to measure execution

performance is Implementation Shortfall (IS). This approach

has become an industry standard as it captures the difference

between the price that an algo decided to trade and the final

execution price (including commissions, taxes, etc.) for a

trade. This is also known as “slippage”.

 At the level of algorithmic strategy, best execution is

achieved by balancing multiple conflicting goals such as best

trade price, minimal market impact, optimal time and liquidity

allocation, and highest possible completion rate [24].

 Passive test tools implemented as part of the test harness

allow capturing business efficiency parameters for every test

execution and storing them into the database for regression

analysis. It is necessary to repeat every test many times as real

markets are not deterministic and good simulated markets are

not deterministic either. Every particular test run will lead to a

slightly different result. Queries executed against captured

data give us the necessary analytics on the systems‟ behavior

and enable comparison between various versions of the sys-

tems under test.

VI. Conclusion

In this paper we have introduced our view on the

development of a trading platform simulator which could be

used for testing of trading algorithms and strategies. The main

advantages of our approach are flexibility and simple tuning of

simulator configuration depending on testing purposes.

We are planning to expand our system and develop an

automated solution which could restart and change the

simulator‟s parameters and, furthermore, collect and aggregate

statistics and logs after each testing cycle. It would make

testing more efficient, adjustable and understandable for

clients.

We believe that the financial regulators will pay much

more attention to algorithmic trades and the importance of

testing trading algorithms in the future. Therefore, trading

simulator solutions will become more and more popular and

will be in higher demand as time goes on.

References

[1] Gov.UK, Future of computer trading in financial

markets: an international perspective,2012,

https://www.gov.uk/government/publications/future-of-

computer-trading-in-financial-markets-an-international-

perspective

[2] U.S. Commodity Futures Trading Commission,

U.S. Securities & Exchange Commission, Findings

Regarding the Market Events of May 6, 2010, Report of the

Staffs of the CFTC and SEC to the Joint Advisory

Committee on Emerging Regulatory Issues,

https://www.sec.gov/news/studies/2010/marketevents-

report.pdf

[3] E. Wes Bethel, D. Leinweber, O. Rübel, K. Wu,

Federal market information technology in the post flash

crash era: roles for supercomputing, WHPCF '11:

Proceedings of the fourth workshop on High performance

computational finance, 2011.

 [4] SEC Release No. 70694, In the Matter of Knight

Capital Americas LLC, 2013,

https://www.sec.gov/litigation/admin/2013/34-70694.pdf

[5] A. Kriger, A. Pochukalina, V. Isaev, Reconciliation

Testing Aspects of Trading Systems Software Failures.

Preliminary Proceedings of the 8th Spring/Summer Young

Researchers‟ Colloquium on Software Engineering

(SYRCoSE 2014), ISBN 978-5-91474-020-4: 125 p. ,

2014,

http://syrcose.ispras.ru/2014/files/SYRCoSE2014_Proceed

ings.pdf

[6] G.Baxter, J. Cartlidge, Flying by the seat of their

pants: what can high frequency trading learn from

aviation? ATACCS '13: Proceedings of the 3rd

International Conference on Application and Theory of

Automation in Command and Control Systems, 2013.

 [7] Regulatory Notice 15-09, Equity Trading

Initiatives:Supervision and Control Practices for

Algorithmic Trading Strategies,

https://www.finra.org/sites/default/files/notice_doc_file_re

f/Notice_Regulatory_15-09.pdf

[8] Securities and futures commission, Code of conduct

persons licensed by or registered with the securities and

futures commission,2013, http://en-

rules.sfc.hk/net_file_store/new_rulebooks/h/k/HKSFC3527

_1868_VER50.pdf 18.10

[9] The European Securities and Markets Authority,

MiFID/MIFIR Discussion Paper,

http://www.esma.europa.eu/system/files/2014-

548_discussion_paper_mifid-mifir.pdf

[10] GATElab, The Dive Deep into Liquidity Pools,

http://www.gatelab.com/products/matching.htm

[11]P. Protsenko, A. Khristenok, A. Lukina, A.

Alexeenko, T. Pavlyuk, I. Itkin, Trading Day Logs Replay

Limitationas and Test Tools Applicability, TMPA'2014:

Proceedings of Annual International Workshop-

Conference Tools & Methods of Program Analysis

(TMPA), 2014

[12] U.S. Securities and Exchange Commission,

Regulatory Actions, https://www.sec.gov/rules.shtml

[13] A.A. Averina, N.A. Antonov, I.L. Itkin, Special

features of testing tools applicable for use in trading

systems production, TMPA'13: Proceedings of Annual

IEEE/ACM International Workshop-Conference Tools &

Methods of Program Analysis (TMPA), 2013

[14]A. Alexeenko, A. Matveeva, D. Sharov, P.

Protsenko, I. Itkin, Compatibility Testing of Clients

Protocol Connectivity to Exchange and Broker Systems,

TMPA'13: Proceedings of Annual IEEE/ACM

International Workshop-Conference Tools & Methods of

Program Analysis (TMPA), 2013

 [15] U.S. Commodity futures trading

commission,http://www.cftc.gov/index.htm

[16] A. Madhavan, VWAP Strategies, 2002,

http://itg.com/news_events/papers/TP_Spring_2002_Madh

avan.pdf

[17] J. Bialkowski, S. Darolles, G. Fol, Improving

VWAP strategies: A dynamical volume approach, 2006,

http://www.ir.canterbury.ac.nz/bitstream/10092/4534/1/12

624569_VWAP_2310_2006_for_JBF.pdf

[18] O. Steinki, Business School, Algorithmoc Trading,

http://evolutiq.com/wp-content/uploads/2014/03/Algo-

Trading-Intro-2013-Steinki-Session-8.pdf

[19] Fidessa, Advanced trading tools,

http://www.fidessa.com/products/sell-side-

solutions/advanced-trading-tools

[20] Compliance: Theory and Practice in the Financial

Services Industry,Market Conduct

Rules,http://www.inhouselegal.com.au/Compliance_Cours

e/lecture_4.htm

[21] IIROC Notice 12-0221, Rules Notice, 2012,

http://www.iiroc.ca/Documents/2012/f62c746a-b5c9-448a-

b57f-f1c04c88de14_en.pdf

[22] ISTQB Glossary, http://astqb.org/glossary/

[23] Trader Planet, Trading 101: The M&Ms for

Successful Trading,

http://www.traderplanet.com/tutorials/view/161657-

trading-101-the-m-amp-ms-for-successful-trading/

[24] Trader Planet, What Traders Need to Know: Best

Execution,

http://www.traderplanet.com/articles/view/162821-what-

traders-need-to-know-best-execution/

http://www.gatelab.com/products/matching.htm

