
Reconciliation Testing Aspects of Trading Systems Software Failures

Anna-Maria Kriger

Kostroma State Technological University

anna-maria.kriger@exactpro.com

Alyona Pochukalina

Vladislav Isaev

Yuri Gagarin State Technical University of Saratov

vladislav.isayev@exactpro.com

 Obninsk Institute for Nuclear Power Engineering

alyona.pochukalina@exactpro.com

Abstract - This paper describes the concept of reconciliation

testing - a process of using data reconciliation tools to validate the

system in parallel with other activities. The authors studied

information about two major software failures in electronic

trading area: Facebook IPO on NASDAQ and Knight Capital

runaway algorithms. This paper contributes to the subject matter

by identifying aspects related to data reconciliation during these

two events. The authors discuss the balance between automated

and manual reactions to discrepancies reported by reconciliation

tools and analyze the necessity of introducing reconciliation

testing as part of system development life cycle for complex

transactional processing systems.

Keywords - data reconciliation, software testing, electronic

trading

I. Introduction
Reconciliation is a process of finding discrepancies in data

obtained from different sources. In accounting, reconciliation
refers to the process of ensuring that two sets of records,
usually account balances, match to each other. In financial
markets, data reconciliation systems help asset managers to
reconcile trades, cash and security flows, balances and
positions between different systems, e.g. internal data stored
by the trading participant vs. external data received from
counterparties, brokers, clearers, custodians, etc. [1]. Data
reconciliation packages are often used by middle- and back-
office teams to identify breaks in post-trade data stored in
relational databases. Most of data reconciliation research is
also focused on various database related techniques [2].
General purpose extract, transform, load (ETL) products such
as Informatica PowerCenter can be used as the basis for
reconciliation tools implementations [3]. The financial
services industry also uses specialized solutions such as
UnaVista [4] from the London Stock Exchange. Data
reconciliation can be implemented as:

a) End of day process

b) Periodic process

c) Real-time process

The optimal implementation approach depends on balance

between time exposure risks of less frequent solutions and

footprint requirements of more frequent solutions.

__
This work is licensed under the Creative Commons Attribution License.

Slower solutions delay the delivery of critical information

to the operational team, but require less hardware resources

compared to faster solutions. Due to latency requirements,

relational databases were removed from the main transactional

path in most of the trading systems [5]. This fact, along with

the desire to limit time exposure, is likely to be reflected in the

next generation of reconciliation products that will move away

from databases and focus more on real-time matching.

In the next part of the paper, Reconciliation Testing concept

is described. Parts III and IV cover two samples of major

software malfunctions in the electronic trading area. The first

one describes events related to a broken Knight Capital algo

that submitted millions of uncontrolled orders into the US

markets and acquired a huge loss position. The second one

describes problems with determining the uncrossing price and

sending confirmations to members during Facebook IPO on

NASDAQ exchange. The last part contains the analysis of

similarities between Knight Capital and Facebook IPO events

from data reconciliation and testing points of view.

II. Reconciliation Testing
Reconciliation testing is a process of using data

reconciliation tools to validate the system in parallel with

other testing activities. The term rarely appears in research

papers. Data reconciliation tools can be viewed as passive

testing tools due to their ability to check data consistency

across the system without initiating any additional message

flows [6]. The ability of data reconciliation tools to report

errors in data consistency makes them useful test oracles for

both functional and non-functional testing activities.

By their very nature, production data reconciliation tools

satisfy the requirements for test tools that can be used in

trading systems production environments [7]. Thus, data

reconciliation tools can support the requirements of High

Volume of Test Automation (HiVAT) methods:

 their impact on the system under test is acceptable for

both production and test environments;

 tools can collect and process data regarding events in the

system under test at production rates/volumes;

 they can highlight discrepancies in large data sets in a

form that can be analyzed by the operational or QA

teams;

 tools stability and resilience are sufficient to run high

volumes of automated tests.

It is important to use data reconciliation tools during

negative tests execution. The Quality Assurance team should

check whether negative scenarios can be picked by the data

reconciliation tools or not. Whenever a negative test scenario

leads to a discrepancy highlighted by the data reconciliation

tool, the Quality Assurance team should validate whether it is

possible to use the information from the tool to identify the

source of the problem. This way, the operational team will

have the necessary insight to take action if the problem ever

occurs in production environment.

Reconciliation testing requires the presence of data

reconciliation tools in the test environments. In some cases it

can lead to an additional license costs and other expenses.

Yet, the absence of production-like instrumentation limits the

coverage of operational testing.

In order to perform reconciliation tests one needs to have

data reconciliation tools available. The Quality Assurance

team should strongly consider the possibility of implementing

test tools capable of running passive data consistency checks.

These tools should be implemented with a potential

opportunity in mind that they will be also used in production

environments.

In summary, the main aspects of data reconciliation tools

are:

a) they are passive test tools

b) they serve as test oracles

c) they can be used with HiVAT methods

d) they should be used during negative test cycles

III. Knight Capital
Knight Capital was one of the most successful high-

frequency trading (HFT) companies and represented

approximately 10% of listed US equity securities in 2011-

2012. Knight operated ultra-fast order router software named

SMARS. A technical glitch in the system that happened on the

1
st
 August 2012 led to an uncontrolled order submission into

the market and accumulated a loss position of $460 million

within 45 minutes period [8].

Smart Order Router (SOR) software is intended to execute

orders in the current fragmented financial markets landscape

[9]. Figure 1 below shows a simplified view of SOR system

architecture.

Fig. 1. Simplified SOR architecture

The Order Management System (OMS) receives orders

from clients (parent orders) and after validation checks and

controls passes them to the SOR subsystem. The latter creates

market orders (child orders) for every parent order and sends

them to different exchanges depending on the state of the

markets and the internal business logic of the system. The

information about trades is stored into Trade Management

System (TMS) and trading positions and accounts are updated.

A set of reconciliation controls is necessary to protect the

system as shown in Figure 2.

Fig. 2. Reconciliation controls in a SOR system

 It is necessary to check the discrepancies between parent

and child orders. When child orders are executed in the market

it is necessary to reconcile market execution reports vs. parent

orders. Whenever discrepancies are detected, they should be

reflected in the error accounts.
The SMARS system contained the necessary reconciliation

controls. However it appeared that they were not properly
configured or tested. Reconciliation control to validate parent
orders vs. child orders appeared to be higher in the source
code and the SMARS system’s logic was not affected by the
check. All other risk controls were located at the OMS level
and were not suitable to block problems should they happen in
the SMARS system. Knight Capital had a special monitoring
system called PMON to view positions accumulated in the
error account, but its output was not linked to any kill-switch
mechanism and did not provide sufficient information to
operational teams to understand the source of the problem.

 Knight Capital implemented changes related to New York
Stock Exchange (NYSE) Retail Liquidity Platform in the
SMARS system and put them live on the date of the events.
Due to a human operator’s error, the changes were deployed
on seven servers instead of eight. The newly introduced switch
triggered a piece of legacy code on that server, and the result
was an uncontrolled flow of child orders into the market. The
system continued to send child orders even though client
parent orders were already filled. Broken real-time
reconciliation controls were not able to halt erroneous run-
away trading algorithm and post-trade controls were not
designed to affect real-time flow. The Securities and Exchange
Commission (SEC) executive order highlighted the lack of
technical supervision in the firm and issued additional fine of
$12 million. Knight Capital was not able to recover from these
events, its share price dropped and the company was later
acquired by one of its competitors.

IV. Facebook IPO
Facebook is the most widely used social network in the

world. Its audience grew substantially over the years and
exceeded one billion users. In 2012 company announced that

it selected NASDAQ market as its listing exchange. Facebook
Initial Public Offering (IPO) was one of the largest IPOs in
history. Many retail and institutional investors were going to
participate and acquire company shares. On the day of IPO,
18

th
 May 2012, the trading activities in the stock were

disrupted by a set of technical malfunctions that lasted for
several hours, had substantial financial impact on some of the
market participants and led to SEC investigation [10].

The NASDAQ system is one of the most advanced trading
platforms used by many national and alternative exchanges in
many countries. The system has resilient and scalable
distributed architecture and a set of built-in reconciliation
controls targeted to validate internal data consistency. The
trading system can operate in two different modes –
continuous trading and auctions. Continuous trading is a very
efficient way to organize markets with sufficient liquidity.
Whenever a price of the buy order exceeds or equals the price
of the sell order, a trade will happen during continuous
trading. Market participants have immediate access to price
discovery and trading opportunities. Continuous trading is a
self-maintained process. However, is it not the most effective
way of starting a new trading day or maintain an orderly
market after significant material events. The reason for that is
that every participant is afraid that others have information
that is not reflected in the share price, as trading had not
started yet and thus waits for others to submit their orders.
Collectively, this behavior results in limited available
liquidity. The problem can be resolved by the auction trading
mode. For a designated period of time, the participants can
submit, amend and cancel their orders, they can also view
prices offered by other participants, but no trades will happen
until a particular moment. Auction trading mode gives
investor sufficient confidence to decide whether they really
have an intention to trade at the price accepted by the market.
At the end of the auction call period the exchange system
identifies uncrossing price that will result in maximum volume
of traded shares and the trading goes into the continuous mode
[11]. Secondary trading in the NASDAQ markets usually
starts with a special auction called “Display Only Period”
(DOP). NASDAQ uses a separate component called “IPO
Cross Application”. It processes all orders to define the price
at which the largest number of shares will trade and then the
matching engine crosses eligible buy and sell orders at that
price.

The NASDAQ system has a reconciliation control to
validate that the list of orders presented in the matching engine
is identical to the one used by the Cross Application to
determine the price. This control directly affects the trading
system and results in a request to recalculate the price
whenever any discrepancy is located. One of the reasons for
the reconciliation check to fail was that NASDAQ allowed
participants to cancel orders even during a short period of
uncrossing price calculation that usually takes 1-2
milliseconds.

Fig. 3. Conceptual exchange trading system architecture

Information about the NASDAQ platform components and
its architecture is not available in the public domain. We
presented a generic view of the simplified architecture in
Figure 3 based on information from the SEC report and our
overall experience with similar systems. Clients submit orders
into the trading gateways and orders are matched inside the
matching engine. According to the report, the system uses
separate components to calculate the uncross price during
auctions and another application to send confirmation reports
to members and publish quote updates called Execution
Application. Similar to the Cross Application, the Execution
Application also had associated reconciliation controls in
place to make sure that its view of the orders match to the one
available in the Cross Application.

On the day of Facebook IPO, the NASDAQ platform
received unusually high number of orders from participants
desiring to participate in market opening auction. The IPO
Cross Application process took around 20ms to determine the
uncrossing price and a single order was canceled during this
period. The application repeated the calculation and
reconciliation check, but more orders were canceled. The
NASDAQ matching engine and the IPO Cross Application
went into an infinite loop. Every attempt to recalculate the
uncrossing price was followed by failed reconciliation check.
Within the next 25 minutes, technical and executive teams
determined that the reconciliation check prevented the system
from opening the market and agreed on a so called Failover
Proposal. Software update switching of the check was
deployed on the secondary server and the primary one was
killed, enabling the system to stop the cycle. Unknown at the
time, due to the ongoing cycle the system’s ability to process
additional inbound order instructions was limited, and an extra
38k orders were stuck in the processing queue and did not
participate in the cross. This led to the failure of
reconciliation check in the Execution Application. Many
market participants were not able to receive confirmations for
their orders and trades until NASDAQ performed the second
failover and switched off the reconciliation control in the
Execution Application. Figure 4 shows the state of the system
after both failover proposals were executed.

Fig. 4. NASDAQ system state after executing the second
failover proposal

The events around Facebook IPO resulted in significant
loss of investors’ confidence, the NASDAQ operator was
censured by SEC and had to pay an administrative penalty of
$10 million and set aside a $62 million-worth fund to
compensate firms harmed by the glitch.

V. Reconciliation Testing Analysis
Large-scale technology disasters are rarely a consequence

of a single factor. Mostly, they result from a set of flaws in

software development and maintenance processes. Data

reconciliation controls serve as an independent additional

protection mechanism for complex systems and therefore

should be considered as a necessary part of production

infrastructures. Reconciliation testing is an activity that not

only helps to deliver systems that will behave correctly in

production, but also provides additional confidence that

operational teams will have sufficient information to take

action if things unexpectedly go wrong.

In both the Knight Capital and the Facebook IPO cases, the

trading systems had a reasonable set of reconciliation controls.

In both cases, the impact of problems might have been

significantly reduced had these controls worked properly. This

section covers distinctions and similarities between the two

considered events.

The correctness of real-time reconciliation control matching

parent orders vs. child orders had not been tested by Knight

Capital for several years. A negative scenario that resulted in a

discrepancy between these two data sets could have

highlighted that the risk control was longer active after being

moved into another part of the source code. On the other hand,

it is clear that reconciliation controls had been functionally

tested by NASDAQ and proved to work as expected.

However, the exchange team had never tested the course of

actions if the reconciliation control failed permanently. The

team executed the failover proposal without validating in

detail first what impact it would have on other components

and reconciliation utilities.

Both companies had a monitoring view that highlighted the

problem to their operational teams. In both cases, the team

was able to correctly interpret the extent of the events. The

Knight Capital team erroneously decided to roll-back the

changes and effectively made the things worse. The NASDAQ

team was not aware of 38k orders stuck in the processing

queue for some time, even though the reconciliation control in

the Execution Application had picked up the problem

immediately and marked the cross as invalid.

The Knight Capital reconciliation tools were not linked to

any facilities to halt the trading. In the NASDAQ case, failed

reconciliation immediately blocked further processing. Upon

reflection, it is clear that neither of these two behaviors is

ideal. It is necessary to have balance between automated stop-

switches and the operators’ ability to control reconciliation

checks.

In both cases, real-time data reconciliation controls were

built into the main transactional part. It might be a good idea

to use tools separated from the main flow, e.g. surveillance

sub-systems, to perform the data reconciliation function.

The following figure shows market surveillance system

usages as the test tool.

Fig. 5. Market Surveillance System used as reconciliation

testing tool.

The primary task of a market surveillance system is to
support the analytics gathered and analyzed by departments
responsible for recognition of possible market abuse [12]. A
surveillance system must collect the information pertaining to
all incoming orders, system responses, data from external
sources and relevant internal states of the trading platform.

It is possible and beneficial to use market surveillance
system as a reconciliation testing tool for the following
reasons:

 all required data is collected from the system and
available both real-time and in the database;

 most of surveillance systems are configured as a
downstream component and do not affect the main
transactional path;

 rules engine allows creating data reconciliation checks
and raise alerts when they fail;

 order book replay allows studying the exact source of
the discrepancy.

VI. Conclusion
The examples of high-profile software failures presented in

the paper show that incorrectly functioning data reconciliation

controls in electronic trading systems can cause substantial

financial losses. Validation of these controls needs to be

incorporated into the software development life cycle for such

systems.

A comprehensive test library should cover various potential

discrepancies reported by data reconciliation tools.

Operational teams should provide responses to each of these

scenarios. Quality Assurance teams should verify that the tools

provide enough information to identify the source of a

discrepancy. The system itself should have controls to halt and

resume trading both automatically and manually if a

breakdown occurs in production environment.

Apart from being a critical part of production

infrastructures, data reconciliation tools can provide additional

test oracles for both functional and non-functional testing

activities and enable more efficient testing of complex

transactional processing systems.

The authors plan to proceed with researching data

reconciliation tools applicability in software testing and

developing a reference implementation of a scalable real-time

tool for reconciliation testing based on the proprietary market

surveillance platform.

References

[1] W. Wheatley Financial Systems, Reconciliation Best Practice,

http://www.watsonwheatley.com/literature.html

[2] M, Cochinwala, V. Kurien, G. Lalk, D. Shasha, “Efficient

data reconciliation”, The Journal of Information Science,

vol.137, issue 1-4, Sep. 2001

[3] R. Nolan, The Informatica Blog, Even ‘The Most Interesting

Man In The World’ Won’t Do This…
http://blogs.informatica.com/perspectives/2012/03/06/even-

the-most-interesting-man-in-the-world-wont-do-this/

[4] London Stock Exchange. How UnaVista Works:
http://www.londonstockexchange.com/products-and-

services/matching-reconciliation/how-unavista-

works/index.html

[5] I. Itkin, Highload trading systems and their testing,

Highload++ 2012

[6] A. Matveeva, N. Antonov, I. Itkin, “The Specifics of Test

Tools Used in Trading Systems Production Environments”,

Tools & Methods of Program Analysis 2013

[7] A. Alexeenko, P. Protsenko, A. Matveeva, I. Itkin, D. Sharov,

“Compatibility Testing of Protocol Connections of Exchange

and Broker Systems Clients”, Tools & Methods of Program

Analysis 2013

[8] SEC Release No. 70694. In the Matter of Knight Capital

Americas LLC

[9] Foresight: The Future of Computer Trading in Financial

Markets (2012) Final Project Report

[10] SEC Release No. 69655. In the Matter of THE NASDAQ

STOCK MARKET, LLC

 [11] NASDAQ Stock Market Rules
http://nasdaq.cchwallstreet.com/

 [12] D. Diaz, M. Zaki, B. Theodoulidis, P. Sampaio, A

Systematic Framework for the Analysis and Development

of Financial Market Monitoring Systems, Annual SRII

Global Conference 2011

http://www.watsonwheatley.com/literature.html
http://blogs.informatica.com/perspectives/2012/03/06/even-the-most-interesting-man-in-the-world-wont-do-this/
http://blogs.informatica.com/perspectives/2012/03/06/even-the-most-interesting-man-in-the-world-wont-do-this/
http://www.londonstockexchange.com/products-and-services/matching-reconciliation/how-unavista-works/index.html%20
http://www.londonstockexchange.com/products-and-services/matching-reconciliation/how-unavista-works/index.html%20
http://www.londonstockexchange.com/products-and-services/matching-reconciliation/how-unavista-works/index.html%20
http://nasdaq.cchwallstreet.com/

